

- propositions suivantes, puis écrire "Vrai "ou "Faux" devant chaque lettre.
- a. Chez l'Homme, la cellule diploïde contient deux lots chromosomiques d'origine maternelle.
- b. La fécondation amplifie le brassage chromosomique effectué lors de la méiose.
- c. Les plasmides sont des molécules d'ARN circulaires utilisées comme outil en génie génétique.
- d. Le caryotype est une représentation de l'emplacement relatif des gènes sur un chromosome.

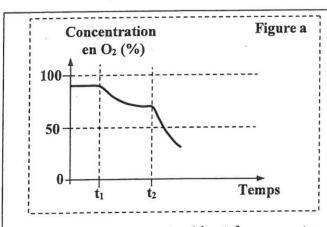
IV. Afin de relier chaque élément du groupe 1 à la définition correspondante dans le groupe 2, copier les couples ci-dessous sur la feuille de production et adresser à chaque numéro dans le groupe 1 la lettre qui lui correspond dans le groupe 2. (1, ...) (2, ...) (3, ...) (4, ...) (1 pt)

1	02			1	-	
L	e	ui	0	ı٢	G	
	-	u	v	1	U	

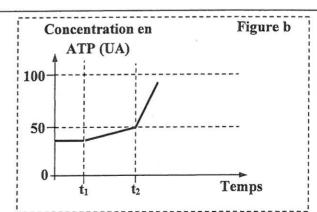
- 1. Tétrade
- 2. Crossing-over (Enjambement chromosomique)
- 3. Anomalie chromosomique
- 4. Brassage interchromosomique

Groupe 2

- a. Mélange des allèles suite à la séparation aléatoire des chromosomes homologues lors de l'anaphase I.
- **b.** Changement dans le nombre ou la structure des chromosomes ou dans les deux.
- c. Structure formée suite à l'appariement de deux chromosomes homologues lors de la prophase I.
- **d.** Echange de fragments chromosomiques entre les chromosomes homologues lors de la prophase I.


Partie II : Raisonnement scientifique et expression écrite et graphique (15 pts)

Exercice 1 (5.5 pts)


Dans la nuit du mercredi 12 août 2015, deux terribles explosions ont secoué la zone industrielle du port de la ville de Tianjin en Chine causant plus d'une centaine de morts et plus de 700 blessés. De nombreuses substances chimiques dangereuses sont habituellement entreposées dans cette zone, notamment le cyanure de sodium à l'origine d'un gaz très toxique, l'acide cyanhydrique (HCN) qui entraîne la mort par asphyxie cellulaire et tissulaire. Afin de comprendre l'effet de l'acide cyanhydrique sur le métabolisme respiratoire et sa relation avec l'asphyxie, on propose les données suivantes :

• Donnée 1:

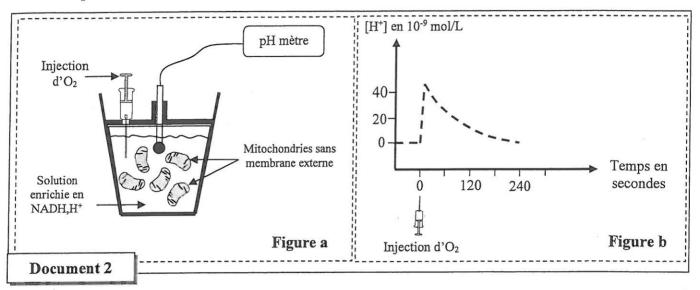
On place une suspension mitochondriale dans un milieu convenable riche en dioxygène (O₂), puis on suit l'évolution des concentrations d'O₂ et d'ATP dans ce milieu. Les figures du document 1 présentent les conditions expérimentales et les résultats obtenus.

t1: Ajout du pyruvate

t2: Ajout d'ADP+Pi

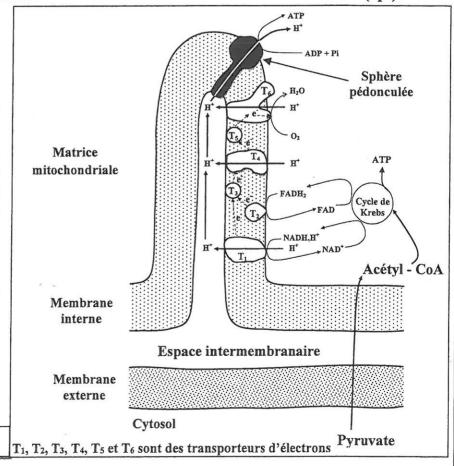
NB : Au début de l'expérience, les mitochondries contiennent une faible quantité d'ADP+ Pi.

Document 1


1. En se basant sur les données du document 1, **décrire** la variation de la concentration en O₂ et en ATP dans le milieu, puis **déduire** l'effet de l'ajout du pyruvate et de l'ADP + Pi sur le métabolisme respiratoire mitochondrial. (1.5 pt)

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2021 – الموضوع - مادة: علوم الحياة والأرض (خيار فرنسية)

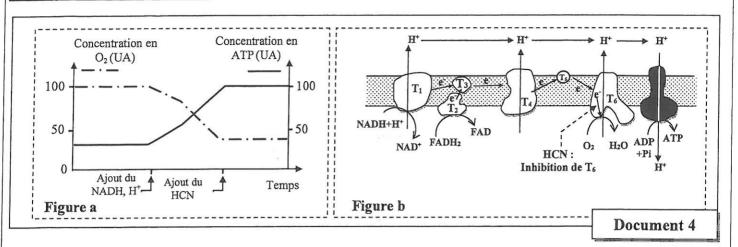
• Donnée 2 : Des mitochondries, sans membranes externes, sont placées dans une solution dépourvue de dioxygène et enrichie en donneurs d'électrons (NADH, H⁺). La variation de la concentration des protons H⁺ dans la solution est ensuite mesurée avant et après l'injection d'une quantité limitée de dioxygène. Les figures a et b du document 2 présentent respectivement les conditions et les résultats de cette expérience.


2. En se basant sur les données du document 2, **décrire** l'évolution de la concentration des protons H⁺ dans la solution, puis **déduire** l'effet de l'injection du dioxygène sur le déplacement des protons H⁺ à travers la membrane mitochondriale interne. (1pt)

• Donnée 3 :

Le schéma du document 3 résume les réactions du métabolisme respiratoire mitochondrial et la relation entre la dégradation du pyruvate et la synthèse d'ATP.

- 3. En s'appuyant sur le document 3, expliquer la variation des concentrations d'O₂, des protons H⁺ et d'ATP enregistrée dans les expériences des documents 1 et 2. (2pts)
- Donnée 4: Pour comprendre la relation entre l'exposition à l'acide cyanhydrique (HCN) et les états d'asphyxie enregistrés suite aux explosions dans la zone industrielle du port de la ville de Tianjin, on propose les données du document 4.


Document 3

La figure a du document 4 présente l'évolution des concentrations d'O₂ et d'ATP dans une suspension mitochondriale enrichie en O₂ et en ADP + Pi suite à l'ajout du NADH,H⁺ et du HCN. La figure b du même document représente le mécanisme de la phosphorylation oxydative au niveau de la mitochondrie et le site d'action du HCN.

الصفحة NS 32F

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2021 – الموضوع - مادة: علوم الحياة والأرض (خيار فرنسية)

4. En exploitant les données du document 4, expliquer l'asphyxie due à l'exposition à l'acide cyanhydrique. (1pt)

Exercice 2 (6.5 points)

La maladie de Tay-Sachs est une maladie héréditaire neurodégénérative dont l'une des formes se déclare vers l'âge de 2 à 3 ans. Parmi ses principaux symptômes : la perte de la motricité, des crises d'épilepsie, des troubles de l'équilibre, une hypersensibilité au bruit, un retard mental et parfois une diminution de la vision. Les enfants atteints par cette maladie décèdent généralement vers l'âge de 5 ans. Afin de comprendre l'origine génétique de cette maladie, on propose les données suivantes :

• Donnée 1: Des recherches ont lié cette maladie à l'absence de l'activité de l'enzyme Hexosaminidase A (HEX-A) au niveau des vésicules cytoplasmiques nommées « lysosomes ». Dans le cas normal, cette enzyme assure la dégradation d'une substance appelée Ganglioside2 (GM2). Dans le cas anormal l'accumulation du GM2 dans les lysosomes devient toxique pour les cellules nerveuses et entraîne leur dégénérescence. Le document 1 présente le devenir du Ganglioside GM2 dans les cellules nerveuses et l'aspect de ces cellules chez un individu sain et chez un individu atteint.

Niveau des molécules	Niveau des cellules (Cellules nerveuses)	Niveau des individus
HEX-A fonctionnelle + Ganglioside Complexe GM2 GM3 GNA	Noyau Lysosome	Individu sain
HEX-A non fonctionnelle Ganglioside GM2 Accumulation de Ganglioside GM2	Noyau Lysosome géant	Individu atteint de Tay-Sachs Document 1

1. En se basant sur le document 1, montrer la relation protéine - caractère. (0.75 pt)

الصفحة 5 NS 32F

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2021 - الموضوع - مادة: علوم الحياة والأرض (خيار فرنسية)

• Donnée 2 : La synthèse de l'enzyme HEX-A est contrôlée par le gène HEX-A qui peut se présenter sous deux formes alléliques : l'allèle normal responsable de la synthèse de l'enzyme HEX-A fonctionnelle et l'allèle anormal responsable de la synthèse de l'enzyme HEX-A non fonctionnelle. Le document 2 présente un fragment du brin d'ADN non transcrit pour chacun des deux allèles. Le document 3 présente le tableau du code génétique.

Numéros des nucléotides

1270

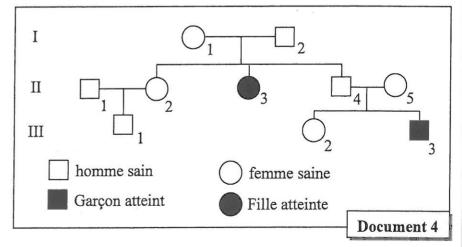
Sens de lecture

Fragment de l'allèle normal

CGT ATA TCC TAT GCC CCT GAC

Fragment de l'allèle anormal

CGT ATA TCT ATC CTA TGC CCC TGA C


L										Do	cument 2
2ème lettre 1ère lettre	1	ט	С			A		G	3 ^{ème} lettre	L	to the value of
	טטט	nı.	UCU		UAU	There	UGU	Cvin	U		
**	UUC	Phe	UCC		UAC	Tyr	UGC	Cys	C	3.00	
U	UUA		UCA	Ser	UAA	STOP	UGA	STOP	A		
	UUG	Leu	UCG		UAG	STOP	UGG	Trp	G		
	CUU		CCU		CAU	YY:-	CGU	Arg	U		
	CUC	¥	CCC	Pro	CAC	His	CGC		C]	
	CUA	Leu	CCA		CAA		CGA]	
8	CUG		CCG		CAG	Gln	CGG		G		
	AUU		ACU		AAU	A	AGU	Ser	U		
	AUC	Ile	ACC	The	AAC	Asn	AGC	Ser	C		
A	AUA		ACA	Thr	AAA	Two	AGA	A 200	A		
	AUG	Met	ACG		AAG	Lys	AGG	Arg	G		
	GUU		GCU		GAU	A a aan	GGU		U		
	GUC	¥7-1	GCC	Ala	GAC	Ac.asp	GGC	Clv	С		
G	GUA	Val	GCA	Ala	GAA		GGA	Gly	A		
	GUG		GCG		GAG	Ac.glu	GGG		G	Document:	3

2. En se basant sur les documents 2 et 3, déterminer la séquence d'ARNm et la chaîne peptidique qui correspondent à chacun des deux allèles, puis expliquer l'origine génétique de la maladie. (1.5 pt)

• Donnée 3:

Le document 4 présente l'arbre généalogique d'une famille dont certains membres sont atteints de la maladie de Tay-Sachs.

3. En se basant sur l'arbre généalogique du document 4, déterminer le mode de transmission de cette maladie. Justifier votre réponse. (1pt)

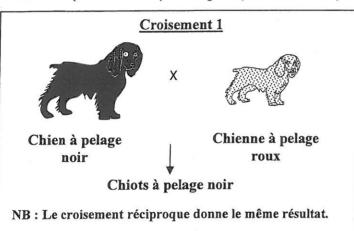
4. a. Donner, en justifiant votre réponse, les génotypes des individus I₂, II₂ et III₃. (1 pt) (Utiliser les symboles N et n pour désigner les deux allèles)

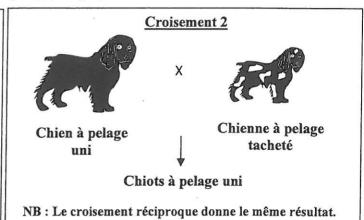
b. Le couple II₄ et II₅ désire avoir un troisième enfant, déterminer la probabilité pour que ce couple donne naissance à un enfant sain. Justifier la réponse par l'échiquier de croisement. (0.75 pt)

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2021 – الموضوع - مادة: علوم الحياة والأرض (خيار فرنسية)

- Donnée 4 : La maladie de Tay-Sachs est assez rare, cependant chez certaines populations d'Amérique du Nord, cette maladie atteint un enfant sur 3600.
- 5. En se basant sur les données précédentes et considérant que ces populations sont en équilibre de Hardy-Weinberg :
 - a. Calculer la fréquence de chacun des deux allèles N et n dans ces populations.

(1pt)


b. Déduire la fréquence des individus porteurs sains dans ces populations.


(0.5pt)

NB : Se contenter de quatre chiffres après la virgule.

Exercice 3 (3 points)

Dans le cadre de l'étude de la transmission de deux caractères héréditaires chez le chien Cocker : la couleur (Noir ou roux) et l'aspect (Uni ou tacheté) du pelage, on propose les croisements suivants :

1. Que peut-on déduire des résultats des deux croisements 1 et 2 ? (1pt)

<u>Croisement 3:</u> Le croisement d'un chien à pelage noir et d'aspect uni avec une chienne à pelage roux et d'aspect tacheté a donné les résultats suivants :

- 25 % chiots à pelage noir et d'aspect uni ;
- 25 % chiots à pelage roux et d'aspect tacheté;
- 25 % chiots à pelage noir et d'aspect tacheté;
- 25 % chiots à pelage roux et d'aspect uni.
- 2. Déterminer, en justifiant la réponse, si les deux gènes étudiés sont liés ou indépendants. (0.5pt)

 Croisement 4: Le croisement d'un chien à pelage noir et d'aspect uni avec une chienne à pelage roux et d'aspect uni a donné une descendance constituée de :
 - 3 chiots à pelage noir et d'aspect uni ;
 - 3 chiots à pelage roux et d'aspect uni ;
 - 1 chiot à pelage noir et d'aspect tacheté;
 - 1 chiot à pelage roux et d'aspect tacheté.
- 3. a. Déterminer le génotype de chacun des parents du 4ème croisement. Justifier votre réponse (0.5 pt)
 - b. Interpréter les résultats du 4^{ème} croisement en vous aidant de l'échiquier de croisement. (1 pt)

Utiliser les symboles suivants : - R et r pour les allèles responsables de la couleur du pelage.

- B et b pour les allèles responsables de l'aspect du pelage.

Fin

الامتحان الوطني الموحد للبكالوريا المسالك الدولية 1-TILLY TUDGE ACTIVOA I SONICIA PICKO الدورة العادية 2021 - عناصر الاجابة – ***| A 190 CA ATTL A KNOW £400A المركز الوطني للتقويم والامتحانات ac **NR 32F** علوم الحياة والأرض 3h مدة الانجاز المادة شعبة العلوم التجريبية مسلك علوم الحياة والأرض (خيار فرنسية) 7 المعامل الشعبة أو المسلك Note **Ouestion** Les éléments de réponse Première partie (5 pts) Accepter toute définition correcte : a. Définition de la mitose : 0.5 Division cellulaire qui permet la formation, à partir d'une cellule mère, de deux cellules filles génétiquement identiques et portant la même information génétique que Ι la cellule mère. b. Définition d'une enzyme de restriction: 0.5 Enzyme qui permet de découper l'ADN à des sites spécifiques. (1,a)(2,b)(3,a) 0.5×4 II (a: Faux) (b: Vrai) (c: Faux) (d: Faux) 0.25×4 III (2,d)(3,b)(4,a) 0.25×4 IV (1,c)Deuxième partie (15 pts) Exercice 1 (5.5 pts) Description: + Variation de la concentration d'O2: 0.5 - Avant l'ajout du pyruvate, la concentration d'O₂ est constante aux environs de 90%. - Suite à l'ajout du pyruvate (t₁), la concentration d'O₂ diminue au début puis tend à se stabiliser vers 70%. - Après l'ajout de l'ADP + Pi (t₂), la concentration d'O₂ diminue rapidement pour atteindre 30% environ. + Variation de la concentration d'ATP: - Avant l'ajout du pyruvate, la concentration en ATP est constante aux environs de 37 0.5 UA. 1 - Suite à l'ajout du pyruvate (t₁), la concentration en ATP marque une faible augmentation jusqu'à atteindre 50 UA environ. - Après l'ajout de l'ADP + Pi (t₂), la concentration en ATP augmente rapidement pour atteindre plus de 90 UA. NB: accepter des valeurs proches à celles proposées dans les éléments de réponse 0.5 Le pyruvate et l'ADP + Pi activent la consommation de dioxygène et la production d'ATP au niveau de la mitochondrie. (Accepter: Le pyruvate et l'ADP + Pi activent la respiration mitochondriale). 0.5 2 - Avant l'injection d'O₂, la concentration de H⁺ était nulle dans le milieu.

الصفحة 2	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2021 - عناصر الإجابة مادة: علوم الحياة والأرض (خيار فرنسية)	-	or.			
	- Juste après l'injection d'O ₂ , la concentration de H ⁺ augmente brusquement pou atteindre une valeur maximale (plus de 40.10 ⁻⁹ mol/L) puis diminue progressivement pour retrouver sa valeur initiale après 240 s. Déduction de l'effet de l'injection du dioxygène sur le déplacement des protons H ⁺ :	t				
	L'O ₂ active la sortie des protons H ⁺ de la matrice vers le milieu extérieur à travers la membrane mitochondriale interne	0	.5			
	Explication de la variation de la concentration d'O ₂ , des protons H ⁺ et d'ATP: Ajout du pyruvate à la suspension mitochondriale dégradation du pyruvate dans la matrice Réduction de transporteurs d'électrons et des protons. oxydation des transporteurs réduits dans la chaîne respiratoire couplée à la	0	.5			
3	réduction d'O ₂ → consommation du dioxygène. (fig a doc 1) → expulsion (pompage) des protons H ⁺ de la matrice vers l'espace intermembranaire → augmentation de la concentration des protons H ⁺ dans l'espace intermembranaire et formation du gradient de protons H ⁺ de part et d'autre de la		.5			
	membrane interne mitochondriale (fig b doc 2)					
4	Explication de l'asphyxie due à l'exposition à l'HCN: L'exposition à l'acide cyanhydrique (HCN) entraine l'inhibition du transporteur $T_6 \rightarrow$ les électrons n'arrivent plus à l'accepteur final qui est O_2 (Pas de réduction d' O_2) ce qui explique l'arrêt de la consommation d' $O_2 \rightarrow$ arrêt de la phosphorylation oxydative ce qui explique l'arrêt de la synthèse d'ATP.					
	= ▶ les cellules sont incapables d'utiliser l'O₂ même en sa présence d'où l'asphyxie.					
	Exercice 2 (6.5 points)	7				
	Relation protéine – caractère : - Chez l'individu sain : l'enzyme (HEX-A) est fonctionnelle → dégradation du Ganglioside GM2 en GM3 + GNA → pas d'accumulation de GM2 dans les lysosomes des cellules nerveuses →					
1	cellules nerveuses normales→ Individu sain. - Chez l'individu atteint : l'enzyme (HEX-A) est non fonctionnelle → pas de dégradation du GM2 →	0.2	25			
	accumulation de GM2 dans les lysosomes des cellules nerveuses → Intoxication et dégénérescence des cellules nerveuses → atteinte par la maladie de Tay-Sachs • La modification de la protéine (l'enzyme HEX-A) entraîne une modification du phénotype de l'individu « Individu sain ou atteint par la maladie de Tay-Sachs » d'où					
	la relation protéine - caractère	0.2	25			

5	المستعدل الولطي المولمة للبادوري - الدورة العديد 2021 - كالمحر الإجباد المعلق	a						
	Séquences d'ARNm et des acides aminés correspondant à chacun des fragments des deux allèles : - Fragment d'allèle normal :).25×2						
	ARNm: CGU- AUA- UCC- UAU- GCC- CCU- GAC							
	Peptide: Arg - Ile - Ser - Tyr - Ala - Pro - Ac.asp							
	- Fragment d'allèle anormal :).25×2						
	ARNm: CGU - AUA- UCU- AUC- CUA- UGC- CCC - UGA- C							
2	Peptide: Arg - Ile - Ser - Ile - Leu - Cys - Pro	80						
	L'origine génétique de la maladie : La mutation par addition de quatre nucléotides au niveau du brin non transcrit de 'ADN a changé le cadre de lecture → synthèse d'ARNm modifié incluant un codon stop par rapport à l'ARNm normal→ synthèse d'une chaîne peptidique anormale → 'enzyme (HEX-A) non fonctionnelle → symptômes de maladie Tay-Sachs Accepter une mutation correcte tel que: - Addition de TCTA entre les nucléotides 1275 et 1276. - Addition de TATC entre les nucléotides 1273 et 1274. - Addition de CTAT entre les nucléotides 1276 et 1277.	0.5						
	Le mode de transmission de cette maladie : (Accepter toute réponse logique) L'allèle responsable de la maladie est récessif	0.25						
2	ustification : Les parents I ₁ et I ₂ (ou II ₄ et II ₅) sont sains et ont donné naissance à	0.25						
3	Le gène responsable de la maladie est porté par un autosome	0.25						
	ustification: La maladie est récessive, la fille II ₃ est atteinte et descend d'un père I ₂	0.25						
	. Les génotypes des individus I2, II2 et III3 avec justification :							
	I2: N//n car l'individu est sain et a donné naissance à une fille atteinte. II2: N//n ou N//N car elle est saine et descend de parents hétérozygotes. III3: n//n car il est atteint. La probabilité pour que le couple (II4 et II5) donne naissance à un enfant sain	0.25 0.5 0.25						
	vec justification : es parents sont hétérozygotes car ils sont sains et ont donné naissance à un enfant							
4	[N] II ₄ x II ₅ [N]							
•	N//n N//n							
	½ N/; ½ n/ ½ N/; ½ n/	0.25						
	chiquier de croisement :							
	Gamètes des parents ½ N/ ½ n/ ½ N/	0.25						
	$\frac{7_2 \text{ N}}{\text{N}}$ $\frac{7_4 \text{ N}/\text{N}}{\text{N}}$ $\frac{\text{N}}{\text{N}}$ $\frac{1}{\text{M}}$ $\frac{1}{\text{N}}$ $\frac{1}{\text{N}}$ $\frac{1}{\text{N}}$							
		0.25						

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2021 - عناصر الإجابة

7 : "		T						
الصفحة	NR 32F	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2021 - عناصر الإجابة		M				
1 - 4		- مادة: علوم الحياة والأرض- شعبة العلوم التجريبية مسلك علوم الحياة والأرض (خيار فرنسية)	-	O(
5								
	a. La i	fréquence des deux allèles N et n dans ces populations :						
	I .	$f(n/n)=1/3600=q^2$ et puisque les populations sont en équilibre.						
	Donc:							
	La fréd	quence de l'allèle n : $f(n) = q = \sqrt{1/3600} = 0.0166$	0.	.5				
		quence de l'allèle N : f(N)= p=1-q= 0.9834	0.					
		Accepter aussi la méthode de calcul suivante :						
	$f(n/n) = q^2 = 1/3600 = 0.0002$							
5	La fréquence de l'allèle n : $f(n) = q = \sqrt{0.0002} = 0.0141$							
3		quence de l'allèle N : $f(N) = p=1-q=0.9859.$						
		uction:	0.	5				
		lividus porteurs sains sont hétérozygotes de génotype (N//n) → la fréquence						
		lividus porteurs sains dans ces populations est :						
		$f(N//n)=2pq=2\times0.0166\times0.9834\approx0.0326$						
	NB: A	ccepter aussi la méthode de calcul suivante :		ļ				
		$f(N//n)=2pq=2\times0.0141\times0.9859\approx0.0278$		j				
	1							
		Exercice 3 (3 points)	I					
	Dianul	es le premier et le deuxième croisement on peut déduire que :						
		AND THE RESERVE OF THE PARTY OF	0.25					
	+ les parents sont des races pures dans chacun des deux croisements							
	+ l'allèle responsable de la couleur noire « R » est dominant et celui responsable de la couleur rousse « r » est récessif							
1		le responsable de l'aspect uni « B » est dominant et celui responsable de	0.25					
		t tacheté « b » est récessif	0.25					
		ne de la couleur du pelage et celui de l'aspect du pelage sont portés par des	0.23	'				
		nes (Les deux caractères étudiés ne sont pas liés au sexe)	0.05	.				
	datoson	nes (Des dean enderes endires no sont pas nos da seno).	0.25	'				
	Les de	ux gènes sont indépendants :						
2		oisième croisement est un test-cross qui a donné quatre phénotypes différents						
2	et équiprobables (Avec des pourcentages égaux).							
	a. Géno	otype des parents :						
		ent à phénotype dominant (pelage noire et uni) est hétérozygote R //r B//b.						
	Justific	ation: Le croisement a donné des descendants doubles récessifs roux et						
			0.25					
	+ Le p	parent à pelage roux et uni est homozygote pour la couleur du pelage mais	0.20					
	hétéro	zygote pour l'aspect du pelage : r//r B//b						
	Justific	ation: Le parent a un phénotype récessif pour la couleur et le croisement a						
3	donné d	es descendants tachetés	0.25					
3								
		•						

الصفحة 5 5	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2021 - عناصر الإجابة - مادة: علوم الحياة والأرض (خيار فرنسية)								
	b. Interprétation des résultats :								
	Phénotypes: Génotypes: Gamètes: Echiquier de croi	[R, E R //r I ¹ / ₄ R/B/; ¹ / ₄ R/b/; (sement:	3//b ½ r/b/	[r, B] r//r B//b ½ r/B/ ; ½ r /b/		0.25			
3	gamètes	1/4 R/B/	1/4 r/b/	1 /4 R/b/	½ r/B/	0.25			
		R //r B//B	r //r B//b	R //r B//b	r //r B//B				
	½ r/B/	1 /8 [R, B]	1 /8 [r, B]	1 /8 [R,B]	1 /8 [r, B]				
		R //r B//b	r //r b//b	R //r b//b	r //r B//b				
	½ r /b/	1 /8 [R, B]	1 /8 [r, b]	1 /8 [R, b]	1 /8 [r, B]				
	Résultats: 3/8					0.25 0.25			
	Les résultats théoriques sont identiques aux résultats expérimentaux								